

UNIFE Research Unit - PI2 -

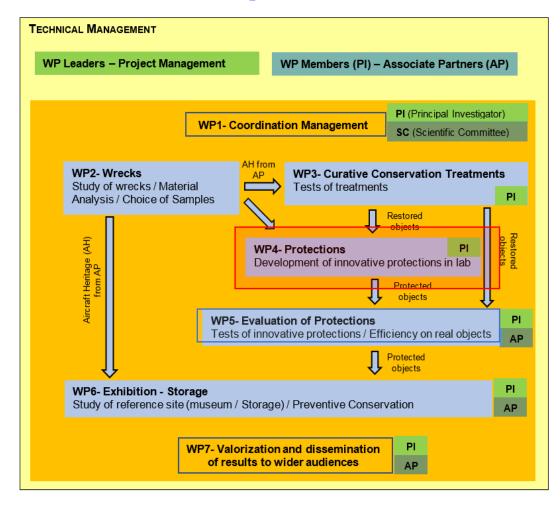
Cecilia Monticelli

Cecilia.monticelli@unife.it; mtc@unife.it

Andrea Balbo

andrea.balbo@unife.it;

Vincenzo Grassi


Vincenzo.grassi@unife.it

Nantes/Toulouse/Prague/Bologna/Ferrara,

Virtual Kickoff Meeting, 5 November 2020

Activities planned in Procraft

WP4 Protection Part I - Development of protective coating for outdoor exposure

WP Leader: UNIFE;

Objectives:

- > Development of innovative protective coatings
- > Implementation of a smart inhibitor release in the coatings
- ► Laboratory evaluation of coating performances

RU:

- > UNIBO
- > CEMES
- > CTU
- > PAs

Activities planned in Procraft: WP4 tasks

Month 6 (April 2021) - Month 30 March 2023)

Task 4.1:Selection of protective coatings

Development of innovative protective coatings for the selected substrates (WP2-3):

- ✓ two modern Al alloys: one wrought and one cast, (selected in M2.1) and
- ✓ one restored original painted substrate.

Selection of effective inhibitors

> Task 4.2: Implementation of a smart inhibitor delivery

Improvement protectiveness of the selected coatings smart inhibitor delivery: embedding of the inhibitor-containing carriers in the selected coatings.

Task 4.3: Tests of different protective coatings

Evaluation of the coating's performances by electrochemical measurements (PPC and EIS): short and long exposures to ARX10. Test for inhibitor release on cross-cut coated specimens during exposures to acidic rain spray fog test.

Activities planned in Procraft: UNIFE in WP5

WP5: Protection Part II – Protective Coating Assessment (from M20 to M36)

WP Leader: UNIBO;

PIs: UNIFE, AA, CEMES, CTU; Associate Partners

Objectives:

- > -Evaluation of effective protection of the innovative protective coatings on original substrates through accelerated ageing tests;
- > Identification of advantages and limits of innovative protection;
- > Comparison between innovative and traditional protective coatings.

Task 5.1: Application of protective coatings on selected substrates and pre-exposure characterization

Task Leader: UNIBO

Application of the **best performing protective coatings from WP4**, by conservators (PI1) on the original substrates (selected in WP3), *according to CR best practices*, with careful monitoring, so as to assess *the conformity of treated surfaces to CH requirements*.

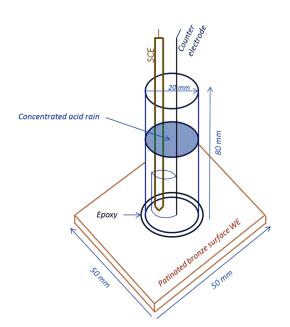
Activities planned in Procraft

Project phase / Duration of the project (in months)	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	29	30	31	32	33	34	35	36
VP4 - Protection Part 1 - Development of protective coating for outdoor exposure (M6 – M30)																																			
Task 4.1: Selection of protective protection		Ш																D4.1																	
Task 4.2: Implementation of a smart inhibitor delivery																				D4.2															
Task 4.3: Tests of different protective treatments																				M4.1									D4.3						
WP5 - Protection Part II - Coating prot	ective	ass	sessn	ient	t (M	120 –	M	36)																											
Task 5.1: Application of protective coatings on selected substrates and pre-exposure characterization																																			
Task 5.2: Exposure of treated samples to accelerated artificial ageing in outdoor and semi-confined conditions																																			
Task 5.3: Characterization of aged surfaces (post-exposure)																																	D5.1 M5.1		
Task 5.4: Comparison of the best innovative protection and the classical protections used in conservation-restoration																																			D5.2

WP4: Month 6 (April 2021) – Month 30 March 2023)

Deliverables and Milestones

- > D4.1 (M18 April 2022) Protection efficiency report for developed coatings on modern alloys
- > D4.2 (M20 June 2022) Protection efficiency report for developed coatings on original painted alloys
- > M4.1 (M20) Proposal of candidate protection systems for bare and painted Al substrates (to be further tested in WP5)
- > D4.3 (M30) Characterization report for developed coatings


Activities planned in Procraft: substrates

Substrates from WP2-3

- > Two modern Al alloys for preliminar lab test (M2.1 Month 6): one wrought and one cast: up to 5wt% Cu (?) Possible candidates (wrought): AA2014, Cast (?)
- > Restored original painted substrate (M3.1):

Activities planned in Procraft: test protocol

Flat Cell

Tube in Poly-methyl-methacrylate:

Ext. dia. 24 mm, int dia. 20 mm; Height 80 mm

Gasket: Epoxy adhesive **Reference:** SCE

Counter: Pt or Stainless steel net or coil

Volume: almost full tube

Electrochemical measurements

EIS measurement:

E_{cor},10 mV rms sinusoidal perturbation; 65 kHz - 1 mHz; 5-10 points / decade.

Cathodic polarization curve: start from E_{cor} to $-0.25 \text{ V vs } E_{cor}$, then wait for E_{cor} recovery (e.g. 1h)

Anodic polarization curve: from $E_{\rm cor}$ to 0.5 V vs $E_{\rm cor}$

Potentiodynamic scan rate 0.167 mV/s.

All potentials will be referred to the SCE scale

Test solution

Conc. acid rain	n (ARX10)
Conductivity (RT)	360 μScm ⁻¹
pН	3.3
CaSO ₄ ·2H ₂ O	14.4 mgL ⁻¹
$(NH_4)_2SO_4$	15.0 mgL ⁻¹
NH ₄ C1	19.1 mgL ⁻¹
NaNO ₃	1.51 mgL ⁻¹
HNO ₃ (65 wt%)	39.3 μL/L
CH ₃ COONa	3.19 mgL ⁻¹
HCOONa	0.8 mgL ⁻¹

Activities planned in Procraft: test protocol

Electrochemical measurements

- Screening experiments: 1 h E_{cor} , EIS (10⁻² Hz) 1h; cathodic PD, Anodic PD
- Short term (1 day): 1 h E_{cor} , EIS (10⁻² Hz) 1h, EIS 2h, EIS 8h, EIS 12 h, EIS 24 h; LP3x; PD cathodic, PD anodic
- Long term: 15 days, EIS 1h, EIS 1d, EIS 3 d, EIS 1w, EIS 2 w, EIS 3w, EIS 4w; PD cathodic, PD anodic (pH and conductivity control, weekly solution renewal or refill)
- > Tests in dupicate and triplicate if different

AR Spray Fog Test

➤ Long term: 1 month, W&D

Thanks for your attention!

